207 research outputs found

    3D Raman mapping of the collagen fibril orientation in human osteonal lamellae

    Get PDF
    AbstractChemical composition and fibrillar organization are the major determinants of osteonal bone mechanics. However, prominent methodologies commonly applied to investigate mechanical properties of bone on the micro scale are usually not able to concurrently describe both factors. In this study, we used polarized Raman spectroscopy (PRS) to simultaneously analyze structural and chemical information of collagen fibrils in human osteonal bone in a single experiment. Specifically, the three-dimensional arrangement of collagen fibrils in osteonal lamellae was assessed. By analyzing the anisotropic intensity of the amide I Raman band of collagen as a function of the orientation of the incident laser polarization, different parameters related to the orientation of the collagen fibrils and the degree of alignment of the fibrils were derived. Based on the analysis of several osteons, two major fibrillar organization patterns were identified, one with a monotonic and another with a periodically changing twist direction. These results confirm earlier reported twisted and oscillating plywood arrangements, respectively. Furthermore, indicators of the degree of alignment suggested the presence of disordered collagen within the lamellar organization of the osteon. The results show the versatility of the analytical PRS approach and demonstrate its capability in providing not only compositional, but also 3D structural information in a complex hierarchically structured biological material. The concurrent assessment of chemical and structural features may contribute to a comprehensive characterization of the microstructure of bone and other collagen-based tissues

    Short-term outcomes of pubertal suppression in a selected cohort of 12 to 15 year old young people with persistent gender dysphoria in the UK

    Get PDF
    BACKGROUND: In adolescents with severe and persistent gender dysphoria (GD), gonadotropin releasing hormone analogues (GnRHa) are used from early/middle puberty with the aim of delaying irreversible and unwanted pubertal body changes. Evidence of outcomes of pubertal suppression in GD is limited. METHODS: We undertook an uncontrolled prospective observational study of GnRHa as monotherapy in 44 12-15 year olds with persistent and severe GD. Prespecified analyses were limited to key outcomes: bone mineral content (BMC) and bone mineral density (BMD); Child Behaviour CheckList (CBCL) total t-score; Youth Self-Report (YSR) total t-score; CBCL and YSR self-harm indices; at 12, 24 and 36 months. Semistructured interviews were conducted on GnRHa. RESULTS: 44 patients had data at 12 months follow-up, 24 at 24 months and 14 at 36 months. All had normal karyotype and endocrinology consistent with birth-registered sex. All achieved suppression of gonadotropins by 6 months. At the end of the study one ceased GnRHa and 43 (98%) elected to start cross-sex hormones. There was no change from baseline in spine BMD at 12 months nor in hip BMD at 24 and 36 months, but at 24 months lumbar spine BMC and BMD were higher than at baseline (BMC +6.0 (95% CI: 4.0, 7.9); BMD +0.05 (0.03, 0.07)). There were no changes from baseline to 12 or 24 months in CBCL or YSR total t-scores or for CBCL or YSR self-harm indices, nor for CBCL total t-score or self-harm index at 36 months. Most participants reported positive or a mixture of positive and negative life changes on GnRHa. Anticipated adverse events were common. CONCLUSIONS: Overall patient experience of changes on GnRHa treatment was positive. We identified no changes in psychological function. Changes in BMD were consistent with suppression of growth. Larger and longer-term prospective studies using a range of designs are needed to more fully quantify the benefits and harms of pubertal suppression in GD

    Automatic alignment of surgical videos using kinematic data

    Full text link
    Over the past one hundred years, the classic teaching methodology of "see one, do one, teach one" has governed the surgical education systems worldwide. With the advent of Operation Room 2.0, recording video, kinematic and many other types of data during the surgery became an easy task, thus allowing artificial intelligence systems to be deployed and used in surgical and medical practice. Recently, surgical videos has been shown to provide a structure for peer coaching enabling novice trainees to learn from experienced surgeons by replaying those videos. However, the high inter-operator variability in surgical gesture duration and execution renders learning from comparing novice to expert surgical videos a very difficult task. In this paper, we propose a novel technique to align multiple videos based on the alignment of their corresponding kinematic multivariate time series data. By leveraging the Dynamic Time Warping measure, our algorithm synchronizes a set of videos in order to show the same gesture being performed at different speed. We believe that the proposed approach is a valuable addition to the existing learning tools for surgery.Comment: Accepted at AIME 201

    London calling Gaza: The role of international collaborations in the globalisation of postgraduate burn care education.

    Get PDF
    Burn injuries represent a significant epidemiological problem, with the vast majority occurring in low- to middle-income countries. These regions also represent areas where lack of socioeconomic growth and geopolitical instability pose additional barriers not only to healthcare provision but also to the acquisition of continuing professional development. Long-distance, web-based learning programmes ('tele-education') have been identified as a successful and powerful means of propagating up-to-date medical education and training in poor-resource, isolated or conflict-ridden regions. This report evaluates the role of tele-education in delivering a distance-learning Master's degree in Burn Care to a group of 11 healthcare professionals working in the occupied Palestinian territories (OPT), which was funded as part of a collaboration between Queen Mary University of London and IMET-Pal (International Medical Education Trust - Palestine). We present our experience in delivering the programme in a conflict-ridden part of the world, which includes the specific adaptations to tailor the programme to regional needs as well the unique challenges faced by students and faculty in enhancing the educational value of this unique initiative. The academic achievements of this group of healthcare professionals were found to be comparable to historical student cohorts from privileged socioeconomic backgrounds and the majority of students felt that participation in the programme contributed to a direct improvement to their daily burn care practices. The successful outcomes achieved by our students support the constantly emerging evidence that targeted, well-delivered, long-distance learning programmes can become powerful tools in combating inequalities in global healthcare and health education

    uptake, intracellular distribution and cellular responses

    Get PDF
    Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages

    Cyclic ADP ribose isomers: Production, chemical structures, and immune signaling

    Get PDF
    Cyclic adenosine diphosphate (ADP)–ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2′cADPR) and v2-cADPR (3′cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2′cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3′cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3′cADPR in bacteria as an antiviral and plant immunity–suppressing signaling molecule

    Dendritic cell-mediated vaccination relies on interleukin-4 receptor signaling to avoid tissue damage after Leishmania major infection of BALB/c mice

    Get PDF
    Prevention of tissue damages at the site of Leishmania major inoculation can be achieved if the BALB/c mice are systemically given L. major antigen (LmAg)-loaded bone marrow-derived dendritic cells (DC) that had been exposed to CpG-containing oligodeoxynucleotides (CpG ODN). As previous studies allowed establishing that interleukin-4 (IL-4) is involved in the redirection of the immune response towards a type 1 profile, we were interested in further exploring the role of IL-4. Thus, wild-type (wt) BALB/c mice or DC-specific IL-4 receptor alpha (IL-4Rα)-deficient (CD11ccreIL-4Rα−/lox) BALB/c mice were given either wt or IL-4Rα-deficient LmAg-loaded bone marrow-derived DC exposed or not to CpG ODN prior to inoculation of 2×105 stationary-phase L. major promastigotes into the BALB/c footpad. The results provide evidence that IL4/IL-4Rα-mediated signaling in the vaccinating DC is required to prevent tissue damage at the site of L. major inoculation, as properly conditioned wt DC but not IL-4Rα-deficient DC were able to confer resistance. Furthermore, uncontrolled L. major population size expansion was observed in the footpad and the footpad draining lymph nodes of CD11ccreIL-4Rα−/lox mice immunized with CpG ODN-exposed LmAg-loaded IL-4Rα-deficient DC, indicating the influence of IL-4Rα-mediated signaling in host DC to control parasite replication. In addition, no footpad damage occurred in BALB/c mice that were systemically immunized with LmAg-loaded wt DC doubly exposed to CpG ODN and recombinant IL-4. We discuss these findings and suggest that the IL4/IL4Rα signaling pathway could be a key pathway to trigger when designing vaccines aimed to prevent damaging processes in tissues hosting intracellular microorganisms

    DOGS: Reaction-Driven de novo Design of Bioactive Compounds

    Get PDF
    We present a computational method for the reaction-based de novo design of drug-like molecules. The software DOGS (Design of Genuine Structures) features a ligand-based strategy for automated ‘in silico’ assembly of potentially novel bioactive compounds. The quality of the designed compounds is assessed by a graph kernel method measuring their similarity to known bioactive reference ligands in terms of structural and pharmacophoric features. We implemented a deterministic compound construction procedure that explicitly considers compound synthesizability, based on a compilation of 25'144 readily available synthetic building blocks and 58 established reaction principles. This enables the software to suggest a synthesis route for each designed compound. Two prospective case studies are presented together with details on the algorithm and its implementation. De novo designed ligand candidates for the human histamine H4 receptor and γ-secretase were synthesized as suggested by the software. The computational approach proved to be suitable for scaffold-hopping from known ligands to novel chemotypes, and for generating bioactive molecules with drug-like properties
    • …
    corecore